3.13.30 \(\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx\) [1230]

3.13.30.1 Optimal result
3.13.30.2 Mathematica [C] (warning: unable to verify)
3.13.30.3 Rubi [A] (verified)
3.13.30.4 Maple [B] (verified)
3.13.30.5 Fricas [C] (verification not implemented)
3.13.30.6 Sympy [F(-1)]
3.13.30.7 Maxima [F(-1)]
3.13.30.8 Giac [F]
3.13.30.9 Mupad [F(-1)]

3.13.30.1 Optimal result

Integrand size = 43, antiderivative size = 211 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx=\frac {(A-4 B+7 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {(2 A-5 B+10 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}+\frac {(2 A-5 B+10 C) \sin (c+d x)}{3 a^2 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {(A-4 B+7 C) \sin (c+d x)}{a^2 d \sqrt {\cos (c+d x)}}-\frac {(A-4 B+7 C) \sin (c+d x)}{3 a^2 d \cos ^{\frac {3}{2}}(c+d x) (1+\cos (c+d x))}-\frac {(A-B+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^2} \]

output
(A-4*B+7*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin( 
1/2*d*x+1/2*c),2^(1/2))/a^2/d+1/3*(2*A-5*B+10*C)*(cos(1/2*d*x+1/2*c)^2)^(1 
/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+1/3*(2* 
A-5*B+10*C)*sin(d*x+c)/a^2/d/cos(d*x+c)^(3/2)-1/3*(A-4*B+7*C)*sin(d*x+c)/a 
^2/d/cos(d*x+c)^(3/2)/(1+cos(d*x+c))-1/3*(A-B+C)*sin(d*x+c)/d/cos(d*x+c)^( 
3/2)/(a+a*cos(d*x+c))^2-(A-4*B+7*C)*sin(d*x+c)/a^2/d/cos(d*x+c)^(1/2)
 
3.13.30.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 11.47 (sec) , antiderivative size = 1753, normalized size of antiderivative = 8.31 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx =\text {Too large to display} \]

input
Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Cos[c + d*x]^(5/2)*(a + 
 a*Sec[c + d*x])^2),x]
 
output
(-8*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, S 
in[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^ 
2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sq 
rt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - Arc 
Tan[Cot[c]]]])/(3*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt 
[1 + Cot[c]^2]*(a + a*Sec[c + d*x])^2) + (20*B*Cos[c/2 + (d*x)/2]^4*Csc[c/ 
2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c 
/2]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt 
[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - 
 ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(A + 2*C + 2* 
B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x 
])^2) - (40*C*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, 
{5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c 
 + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*S 
qrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d 
*x - ArcTan[Cot[c]]]])/(3*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d* 
x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])^2) + (Cos[c/2 + (d*x)/2]^4*Sqr 
t[Cos[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((-4*(-2*B + 4*C + 
 A*Cos[c] - 2*B*Cos[c] + 3*C*Cos[c])*Csc[c/2]*Sec[c/2]*Sec[c])/d - (4*Sec[ 
c/2]*Sec[c/2 + (d*x)/2]^3*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2] + C*Sin[(d*x...
 
3.13.30.3 Rubi [A] (verified)

Time = 1.12 (sec) , antiderivative size = 202, normalized size of antiderivative = 0.96, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.349, Rules used = {3042, 4600, 3042, 3520, 27, 3042, 3457, 27, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sec (c+d x)+C \sec (c+d x)^2}{\cos (c+d x)^{5/2} (a \sec (c+d x)+a)^2}dx\)

\(\Big \downarrow \) 4600

\(\displaystyle \int \frac {A \cos ^2(c+d x)+B \cos (c+d x)+C}{\cos ^{\frac {5}{2}}(c+d x) (a \cos (c+d x)+a)^2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A \sin \left (c+d x+\frac {\pi }{2}\right )^2+B \sin \left (c+d x+\frac {\pi }{2}\right )+C}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 3520

\(\displaystyle \frac {\int \frac {3 a (A-B+3 C)+a (A+5 B-5 C) \cos (c+d x)}{2 \cos ^{\frac {5}{2}}(c+d x) (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {3 a (A-B+3 C)+a (A+5 B-5 C) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (\cos (c+d x) a+a)}dx}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {3 a (A-B+3 C)+a (A+5 B-5 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\int \frac {3 \left (a^2 (2 A-5 B+10 C)-a^2 (A-4 B+7 C) \cos (c+d x)\right )}{\cos ^{\frac {5}{2}}(c+d x)}dx}{a^2}-\frac {2 (A-4 B+7 C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {3 \int \frac {a^2 (2 A-5 B+10 C)-a^2 (A-4 B+7 C) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)}dx}{a^2}-\frac {2 (A-4 B+7 C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3 \int \frac {a^2 (2 A-5 B+10 C)-a^2 (A-4 B+7 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx}{a^2}-\frac {2 (A-4 B+7 C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {3 \left (a^2 (2 A-5 B+10 C) \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)}dx-a^2 (A-4 B+7 C) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx\right )}{a^2}-\frac {2 (A-4 B+7 C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3 \left (a^2 (2 A-5 B+10 C) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx-a^2 (A-4 B+7 C) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\right )}{a^2}-\frac {2 (A-4 B+7 C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {\frac {3 \left (a^2 (2 A-5 B+10 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-a^2 (A-4 B+7 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )\right )}{a^2}-\frac {2 (A-4 B+7 C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3 \left (a^2 (2 A-5 B+10 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-a^2 (A-4 B+7 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )\right )}{a^2}-\frac {2 (A-4 B+7 C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {3 \left (a^2 (2 A-5 B+10 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-a^2 (A-4 B+7 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )}{a^2}-\frac {2 (A-4 B+7 C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {3 \left (a^2 (2 A-5 B+10 C) \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )-a^2 (A-4 B+7 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )}{a^2}-\frac {2 (A-4 B+7 C) \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B+C) \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2}\)

input
Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Cos[c + d*x]^(5/2)*(a + a*Sec 
[c + d*x])^2),x]
 
output
-1/3*((A - B + C)*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2)*(a + a*Cos[c + d*x]) 
^2) + ((-2*(A - 4*B + 7*C)*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2)*(1 + Cos[c 
+ d*x])) + (3*(a^2*(2*A - 5*B + 10*C)*((2*EllipticF[(c + d*x)/2, 2])/(3*d) 
 + (2*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2))) - a^2*(A - 4*B + 7*C)*((-2*E 
llipticE[(c + d*x)/2, 2])/d + (2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]))))/a 
^2)/(6*a^2)
 

3.13.30.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3520
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*A - b*B + a*C)*Cos[e + f*x]*(a + b* 
Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x 
] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c 
+ d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*(b*c*m + a 
*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c 
*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c 
^2 - d^2, 0] && LtQ[m, -2^(-1)]
 

rule 4600
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x 
_)])^(m_.)*((A_.) + (B_.)*sec[(e_.) + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.) 
*(x_)]^2), x_Symbol] :> Simp[d^(m + 2)   Int[(b + a*Cos[e + f*x])^m*(d*Cos[ 
e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; Fr 
eeQ[{a, b, d, e, f, A, B, C, n}, x] &&  !IntegerQ[n] && IntegerQ[m]
 
3.13.30.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(723\) vs. \(2(247)=494\).

Time = 3.39 (sec) , antiderivative size = 724, normalized size of antiderivative = 3.43

method result size
default \(\text {Expression too large to display}\) \(724\)

input
int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*sec(d*x+c))^2,x, 
method=_RETURNVERBOSE)
 
output
-1/2*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a^2*((-2*B+ 
4*C)*(cos(1/2*d*x+1/2*c)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c 
)^2-1)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+ 
1/2*c),2^(1/2)))-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)/cos(1/2*d*x+ 
1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+1/3*(A-B+C)*(2 
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*Elliptic 
F(cos(1/2*d*x+1/2*c),2^(1/2))-3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*sin 
(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-2*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(s 
in(1/2*d*x+1/2*c)^2)^(1/2)*(2*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*Elli 
pticE(cos(1/2*d*x+1/2*c),2^(1/2)))*cos(1/2*d*x+1/2*c)-12*sin(1/2*d*x+1/2*c 
)^6+20*sin(1/2*d*x+1/2*c)^4-7*sin(1/2*d*x+1/2*c)^2)/cos(1/2*d*x+1/2*c)/(-2 
*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(sin(1/2*d*x+1/2*c)^2-1) 
+4*C*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^ 
2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2 
*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c) 
^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+(4*B-8*C)/sin(1/2*d*x+1/2 
*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2* 
c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-EllipticE(cos(1/2*d 
*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2) 
^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.13.30.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 476, normalized size of antiderivative = 2.26 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx=-\frac {2 \, {\left (3 \, {\left (A - 4 \, B + 7 \, C\right )} \cos \left (d x + c\right )^{3} + {\left (4 \, A - 19 \, B + 32 \, C\right )} \cos \left (d x + c\right )^{2} - 2 \, {\left (3 \, B - 4 \, C\right )} \cos \left (d x + c\right ) - 2 \, C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left (\sqrt {2} {\left (-2 i \, A + 5 i \, B - 10 i \, C\right )} \cos \left (d x + c\right )^{4} - 2 \, \sqrt {2} {\left (2 i \, A - 5 i \, B + 10 i \, C\right )} \cos \left (d x + c\right )^{3} + \sqrt {2} {\left (-2 i \, A + 5 i \, B - 10 i \, C\right )} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (2 i \, A - 5 i \, B + 10 i \, C\right )} \cos \left (d x + c\right )^{4} - 2 \, \sqrt {2} {\left (-2 i \, A + 5 i \, B - 10 i \, C\right )} \cos \left (d x + c\right )^{3} + \sqrt {2} {\left (2 i \, A - 5 i \, B + 10 i \, C\right )} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, {\left (\sqrt {2} {\left (-i \, A + 4 i \, B - 7 i \, C\right )} \cos \left (d x + c\right )^{4} + 2 \, \sqrt {2} {\left (-i \, A + 4 i \, B - 7 i \, C\right )} \cos \left (d x + c\right )^{3} + \sqrt {2} {\left (-i \, A + 4 i \, B - 7 i \, C\right )} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, {\left (\sqrt {2} {\left (i \, A - 4 i \, B + 7 i \, C\right )} \cos \left (d x + c\right )^{4} + 2 \, \sqrt {2} {\left (i \, A - 4 i \, B + 7 i \, C\right )} \cos \left (d x + c\right )^{3} + \sqrt {2} {\left (i \, A - 4 i \, B + 7 i \, C\right )} \cos \left (d x + c\right )^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{4} + 2 \, a^{2} d \cos \left (d x + c\right )^{3} + a^{2} d \cos \left (d x + c\right )^{2}\right )}} \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*sec(d*x+c) 
)^2,x, algorithm="fricas")
 
output
-1/6*(2*(3*(A - 4*B + 7*C)*cos(d*x + c)^3 + (4*A - 19*B + 32*C)*cos(d*x + 
c)^2 - 2*(3*B - 4*C)*cos(d*x + c) - 2*C)*sqrt(cos(d*x + c))*sin(d*x + c) - 
 (sqrt(2)*(-2*I*A + 5*I*B - 10*I*C)*cos(d*x + c)^4 - 2*sqrt(2)*(2*I*A - 5* 
I*B + 10*I*C)*cos(d*x + c)^3 + sqrt(2)*(-2*I*A + 5*I*B - 10*I*C)*cos(d*x + 
 c)^2)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - (sqrt(2 
)*(2*I*A - 5*I*B + 10*I*C)*cos(d*x + c)^4 - 2*sqrt(2)*(-2*I*A + 5*I*B - 10 
*I*C)*cos(d*x + c)^3 + sqrt(2)*(2*I*A - 5*I*B + 10*I*C)*cos(d*x + c)^2)*we 
ierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*(sqrt(2)*(-I*A 
 + 4*I*B - 7*I*C)*cos(d*x + c)^4 + 2*sqrt(2)*(-I*A + 4*I*B - 7*I*C)*cos(d* 
x + c)^3 + sqrt(2)*(-I*A + 4*I*B - 7*I*C)*cos(d*x + c)^2)*weierstrassZeta( 
-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*(sqr 
t(2)*(I*A - 4*I*B + 7*I*C)*cos(d*x + c)^4 + 2*sqrt(2)*(I*A - 4*I*B + 7*I*C 
)*cos(d*x + c)^3 + sqrt(2)*(I*A - 4*I*B + 7*I*C)*cos(d*x + c)^2)*weierstra 
ssZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/ 
(a^2*d*cos(d*x + c)^4 + 2*a^2*d*cos(d*x + c)^3 + a^2*d*cos(d*x + c)^2)
 
3.13.30.6 Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/cos(d*x+c)**(5/2)/(a+a*sec(d*x+ 
c))**2,x)
 
output
Timed out
 
3.13.30.7 Maxima [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*sec(d*x+c) 
)^2,x, algorithm="maxima")
 
output
Timed out
 
3.13.30.8 Giac [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+a*sec(d*x+c) 
)^2,x, algorithm="giac")
 
output
integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/((a*sec(d*x + c) + a)^2* 
cos(d*x + c)^(5/2)), x)
 
3.13.30.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\cos \left (c+d\,x\right )}^{5/2}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2} \,d x \]

input
int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^(5/2)*(a + a/cos 
(c + d*x))^2),x)
 
output
int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^(5/2)*(a + a/cos 
(c + d*x))^2), x)